Electron dynamics in MoS2-graphite heterostructures.

نویسندگان

  • Xinwu Zhang
  • Dawei He
  • Lixin Yi
  • Siqi Zhao
  • Jiaqi He
  • Yongsheng Wang
  • Hui Zhao
چکیده

The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The transfer of these photocarriers to the adjacent multilayer graphite was time resolved by measuring the differential reflection of a probe pulse. We found that photocarriers injected into monolayer MoS2 transfer to graphite on an ultrafast time scale shorter than 400 fs. Such an efficient charge transfer is key to the development of high performance optoelectronic devices with MoS2 as the light absorbing layer and graphite as electrodes. The absorption coefficient of monolayer MoS2 can be controlled by the carriers in graphite. This process can be used for interlayer coupling and control. In a bulk MoS2-graphite heterostructure, the photocarrier transfer time is about 220 ps, due to the inefficient interlayer charge transport in bulk MoS2. These results provide useful information for developing optoelectronic devices based on MoS2-graphite heterostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries.

We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable p...

متن کامل

Ultrafast charge transfer in atomically thin MoS<sub>2</sub>/WS<sub>2</sub> heterostructures

Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena1–10. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, b...

متن کامل

Electron transfer kinetics on natural crystals of MoS2 and graphite.

Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined ...

متن کامل

Fabrication of inorganic molybdenum disulfide fullerenes by arc in water

Closed caged fullerene-like molybdenum disulfide (MoS2) nano-particles were obtained via an arc discharge between a graphite cathode and a molybdenum anode filled with microscopic MoS2 powder submerged in de-ionized water. A statistical study of over 150 polyhedral fullerene-like MoS2 nano-particles in plan view transmission electron microscopy revealed that the majority consisted of 2–3 layers...

متن کامل

Lateral heterostructures of two-dimensional materials by electron-beam induced stitching

We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica substrates and patterned by elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 9 38  شماره 

صفحات  -

تاریخ انتشار 2017